
Submitted to:

HCVS 2015

c© D. Schwartz-Narbonne, P.Rümmer, M. Schäf, A. Tiwari, T.Wies

This work is licensed under the

Creative Commons Attribution License.

Non-Monotonic Program Analysis

Daniel Schwartz-Narbonne

New York University

Philipp Rümmer

Uppsala University

Martin Schäf

SRI International

Ashish Tiwari

SRI International

Thomas Wies

New York University

Traditionally, program analysis is formulated as computation of fixpoints using monotonic itera-

tion of lattice-theoretic functions. Monotonicity is important because it ensures convergence of the

analysis towards a fixpoint. Still, the idea of non-monotonic iteration is intriguing because such an

analysis can cut short the search, potentially converging much faster than monotonic iteration. In this

paper, we answer the question whether non-monotonic analyses are a worthwhile pursuit. We con-

sider several non-monotonic algorithms for the specific problem of solving systems of Horn clauses.

Our algorithms have in common that they (1) use logical abduction to span the search space of non-

monotonic iteration sequences, and (2) bound the non-monotonic search by a monotone sequence of

checkpoints to enforce overall convergence. The algorithms differ in their search strategies, where

the most interesting one performs an A*-like search. We have implemented these algorithms and

compared them against existing monotonic analyses for solving Horn clauses. Our evaluation in-

dicates that non-monotonic fixpoint iteration is a promising complementary technique to traditional

program analyses.

1 Introduction

Program analysis is quintessentially a fixpoint computation problem [8]. Constructive definitions of

fixpoints are given in terms of a monotonic sequence whose limit is the required fixpoint. Most program

analysis techniques compute such a monotonic sequence to find fixpoints. We call them monotonic

program analyses here. Can we build program analyzers that are non-monotonic? In other words, in our

effort to find a desired fixpoint, can we generate a non-monotonic sequence that eventually leads to the

fixpoint? Could the non-monotonic search expedite our convergence to the fixpoint? We try to answer

these questions in this paper.

In this paper, we are interested in the assertion checking problem: given a program and an assertion,

prove that the assertion is valid on all executions of the program. We can solve the assertion checking

problem by finding an invariant that is sufficient to prove the assertion. An invariant is a set of states

that is a fixpoint (of the one-step transition relation describing the, possibly abstract, semantics) of the

program. There are two different ways to find a fixpoint (invariant):

Increasing Sequence. We start with an underapproximation S0 of the invariant, iteratively add states to

the set to generate an increasing chain of sets

S0 ⊂ S1 ⊂ S2 ⊂ . . .

until we reach a fixpoint.

Decreasing Sequence. We start with an overapproximation T0 of the desired invariant, iteratively re-

move states from the set to generate a decreasing chain of sets

T0 ⊃ T1 ⊃ T2 ⊃ . . .

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Non-Monotonic Program Analysis

until we reach a fixpoint.

Typically, the set S0 consists of all possible initial states of the program in the increasing sequence

approach, and the sets S1,S2, . . . are generated via forward propagation using (approximations of) the

strongest postcondition operator. On the other hand, in the decreasing sequence approach, the set T0

consists of all the (assumed) safe states specified in the assertion, and the sets T1,T2, . . . are generated

via backward propagation using (approximations of) the weakest precondition operator. Hence, we shall

refer to the increasing sequence approach as forward analysis, and the decreasing sequence approach as

backward analysis.

Both forward and backward analysis are monotonic, as they generate intermediate sets that are mono-

tonically increasing or decreasing. Both have their own benefits. Forward analysis is guided by the initial

program states, but remains oblivious to the (final) assertion all through. On the other hand, backward

analysis is goal-directed, but it is unable to benefit from the knowledge of the initial states in its entire

run. Hence, both are not perfect in the search for the desired fixpoint (invariant). By combining forward

and backward analysis, one could possibly obtain a program analysis technique that is goal-directed, but

also cognizant of the initialization. Hence, a combined approach can possibly reach fixpoint faster than

either individual approach. However, a combined approach will generate a non-monotonic sequence of

sets, which can possibly cycle without making progress toward reaching a fixpoint.

In this paper, we investigate non-monotonic approaches to program analysis that combine both for-

ward and backward analyses. We use the Horn clause formulation of program analysis problems to

present our approach. However, our ideas are more generally applicable and can be lifted to program

analysis that are described using other means. Our main contribution is that we present different non-

monotonic approaches that combine forward and backward analysis, which are all guaranteed to make

progress. One of the main conclusion of our study is that non-monotonic analysis can often reach fix-

points faster than their monotonic counterparts. Moreover, it is possible to use several different strategies

for combining forward and backward steps, where some of the interesting and effective strategies per-

form A*-like search.

1.1 Brief Overview of our Approach

The search for a suitable invariant that is sufficient to verify assertions in a program can be formulated

as a search for a satisfying assignment of a set of Horn clauses that contain relational variables (higher-

order variables that represent the “invariant” at different program points). The Horn clause formulation

is appealing since it can uniformly describe analysis of iterative and recursive programs. It also allows

flexibility in reasoning about different paths in the program. Furthermore, analysis approaches map

directly to solving of Horn clauses: forward propagation involves updating the (relation in the) head of

the Horn clause, whereas backward propagation involves updating the (relations in the) body of the Horn

clause.

We illustrate our main idea behind ensuring progress of our non-monotonic procedure in Figure 1.

The notional plot in Figure 1 shows that in non-monotonic program analysis, we allow the procedure to

search the fixpoint by using an arbitrary strategy to alternate between forward and backward steps. To

avoid getting stuck in a cycle, we use the following key idea: every so often, we mark partial solutions

that cannot be improved by a backward (strengthening) step alone, and force these marked solutions

to monotonically get bigger (by disjuncting them with the previously marked solution). Thus, we get a

monotonically increasing set – shown by the bottom dotted line in Figure 1. We can also perform the dual

operation: every so often, we mark partial solutions that cannot be improved by a forward (weakening)

step alone, and force these marked solutions to monotonically get smaller (by conjuncting them with the

D. Schwartz-Narbonne, P.Rümmer, M. Schäf, A. Tiwari, T.Wies 3

Iteration Number (Time)

Subset

of

state

space

(ordered

by

inclusion)

inductive sets
sufficient to prove
assertion

forward

backward

non−monotonic

guarantee progress

Figure 1: Notional illustration of non-monotonic analysis: Unlike forward or backward analysis that

monotonically advance toward a fixpoint, non-monotonic analysis can fluctuate in arbitrary ways.

Progress is guaranteed by bounding the fluctuations inside a monotonically shrinking region (shown

by dotted lines).

previously marked solution). Thus, we get a monotonically decreasing set – shown by the top dotted line

in Figure 1. Doing either one is sufficient to guarantee progress. In between these marked solution points,

the algorithm is free to pick any strategy to alternate between forward and backward steps. In particular,

a A*-heuristic search can be implemented that can potentially guide convergence to the fixpoint much

faster.

2 Related Work

There is plenty of work in combining forward and backward analyses; for instance, see [6, 9, 24]. In all

of this existing work, forward and backward analyses are combined in stages in a careful way – typically,

each monotonic analysis is performed “to completion” before switching to the dual analysis (which is

used to refine the results from the other analyses). One truly non-monotonic program analysis approach

was proposed by Gulwani and Jojic [16], where the hypothesized invariants at each program point were

made “less locally inconsistent” in every step, without any regards to preserving monotonicity, and in a

probabilistic fashion guided by an “inconsistency measure”. Our procedure is similar and inherits many

of the benefits of that approach [16]. One difference is that our formulation uses Horn clauses and ab-

duction, and hence, our analysis can be more fine-grained and focus on individual paths. Second, in

each step, we make hypothesized invariants “locally consistent”, whereas [16] can leave them inconsis-

tent. Moreover, [16] can be viewed as performing probabilistic inference (Gibbs sampling) guided by

the inconsistency measure, whereas our algorithm is deterministic (but it can use A* search to guide the

process of convergence).

Logic abduction, originally introduced by [29], has recently emerged as a new technique to derive

annotations for program analysis. Algorithms have been presented that use abduction to improve shape

analysis [7], for under-approximation in abstract interpretation [17], and for fault-localization based on

abduction [12]. More recently, abduction has been used to automatically infer loop invariants [13]. The

algorithm in this paper generalizes the idea of using abduction to find loop invariants to solving systems

of Horn clauses, for instance for the purpose of analysing recursive programs.

4 Non-Monotonic Program Analysis

Horn clauses were proposed as intermediate representation for verification in a number of recent pa-

pers, including [4,15,27]. [18] uses Horn clauses for verification of multi-threaded programs. A range of

applications of Horn clauses, including inter-procedural model checking, was given in [15]. Extensions

of Horn clauses used in verification include variants with universal [5] and existential quantifiers [3], as

well as alternations [2].

One benefit of formulating program analysis problems in terms of logic programming is that existing

analysis techniques based on constraint solving and theorem proving can be rephrased for Horn clauses,

yielding useful generalizations. For example, rephrasing interpolation-based loop invariant inference [14,

25] for Horn clauses leads to the more general notion of tree interpolants [32]. Tree interpolation is no

longer restricted to the inference of invariants for sequential loops but also applies to inference problems

in recursive and multi-threaded programs.

In the context of verification, the majority of algorithms to solve Horn clauses are based on Craig

interpolation, and use solvers for recursion-free Horn clauses as a sub-procedure. The procedure for

solving Horn clauses from [18], over the combined theory of linear integer arithmetic and uninterpreted

functions, was presented in [19]. Further algorithms were developed in [26, 32], along with a range

of generalised methods for Craig interpolation, such as tree interpolants, DAG interpolants, and dis-

junctive interpolants. A further line of research applies incremental induction (IC3/PDR) to solve Horn

clauses [23]: fixed-point constraints are solved by incrementally strengthening approximations of the

sets of states reachable in i = 1, . . . ,k steps, until eventually a sufficiently strong inductive invariant is

found.

Inter-procedural software model checking with function summaries and interpolation has been an

active area of research over the last decade; we briefly survey techniques that are most related to our

work. In the context of predicate abstraction, it has been discussed how well-scoped invariants can

be inferred [22] in the presence of function calls. Based on the concept of Horn clauses, a predicate

abstraction-based algorithm for bottom-up construction of function summaries was presented in [15].

Function summaries generated using interpolants have also been used to speed up bounded model check-

ing [34]. Generalisations of the Impact algorithm [25] to programs with procedures are given in [21]

(formulated using nested word automata) and [1].

Synthesis of necessary pre-conditions of a program has been described, among others, in [10], [28],

and [30].

3 Preliminaries

Throughout this paper, we assume that a first-order vocabulary of interpreted symbols has been fixed,

consisting of a set F of fixed-arity function symbols, and a set P of fixed-arity predicate symbols.

Interpretation of F and P is determined by a class S of structures (U, I) consisting of non-empty

universe U , and a mapping I that assigns to each function in F a set-theoretic function over U , and to

each predicate in P a set-theoretic relation over U . As a convention, we assume the presence of an

equation symbol “=” in P , with the usual interpretation. Given a countably infinite set X of variables,

a constraint language is a set Constr of first-order formulae over F ,P,X For example, the language

of quantifier-free Presburger arithmetic has F = {+,−,0,1,2, . . .} and P = {=,≤, |}).

A constraint is called satisfiable if it holds for some structure in S and some assignment of the

variables X , otherwise unsatisfiable. We say that a set Γ ⊆ Constr of constraints entails a constraint φ ∈

D. Schwartz-Narbonne, P.Rümmer, M. Schäf, A. Tiwari, T.Wies 5

Constr if every structure and variable assignment that satisfies all constraints in Γ also satisfies φ ; this is

denoted by Γ |= φ . When Γ is empty, we just write |= φ and say that φ is valid.

Given a constraint φ , fv(φ) denotes the set of free variables in φ . We write φ [x1, . . . ,xn] to state that

a constraint contains (only) the free variables x1, . . . ,xn, and φ [t1, . . . , tn] for the result of substituting the

terms t1, . . . , tn for x1, . . . ,xn.

Given a constraint φ , and a set V ⊆ X of variables, we define the formula ∃fv(φ)\V . φ to be the

existential projection proj∃(φ ,V) of φ onto V .

Abduction is a technique to infer a missing premise to explain a given conclusion. Formally, given

an axiom A and a conclusion B, an abduction for A and B is a constraint φ such that A∧ φ |= B, and

A∧φ is satisfiable. Throughout the paper we use an abductive inference algorithm based on the one by

Dillig et al [13]: the problem of finding an abduction φ , such that |= (A∧φ) =⇒ B can be rewritten as

φ |= (A =⇒ B). Now, it is evident that we can find an abduction by universally quantifying any subset

V ⊆ fv((A =⇒ B)) of free variables in (A =⇒ B). That is, since, for any such V , we have

(∀V.A =⇒ B) |= (A =⇒ B)

any formula φ which is logically equivalent to ∀V.A =⇒ B is a valid abduction as long as it does not

contradict with A.

In [13], sets V of maximum cardinality (such that ∀V.A =⇒ B and A are consistent) are selected

to compute abductions. For our analysis approach, we found it beneficial to consider a larger range of

abductions by selecting all maximum sets V such that ∀V.A =⇒ B and A are consistent; the overhead

of computing more abductions was easily compensated by the greater flexibility to generalize and find

better predicates.

3.1 Horn Clauses

To define Horn clauses that can encode program verification problems, we fix a set R of uninterpreted

fixed-arity relation symbols, disjoint from P and F . A Horn clause is a formula C∧B1 ∧ ·· ·∧Bn → H

where

• C is a constraint over F ,P,X ;

• each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order terms over F ,X ;

• H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms, or is the constraint

false.

H is called the head of the clause, C∧B1 ∧ ·· · ∧Bn the body. In case C = true, we usually leave out C

and just write B1 ∧ ·· · ∧Bn → H . First-order variables (from X) in a clause are considered implicitly

universally quantified; relation symbols represent set-theoretic relations over the universe U of a struc-

ture (U, I) ∈ S . Notions like (un)satisfiability and entailment generalise straightforwardly to formulae

with relation symbols.

A relation symbol mapping is a function m : R → Constr that maps each n-ary relation symbol p∈R

to a constraint M(p) =Cp[x1, . . . ,xn] with n free variables. The instantiation m(h) of a Horn clause h is

defined by:

m
(

C∧ p1(t̄1)∧ ·· ·∧ pn(t̄n)→ p(t̄)
)

=C∧m(p1)[t̄1]∧ ·· ·∧m(pn)[t̄n]→ m(p)[t̄]

m
(

C∧ p1(t̄1)∧ ·· ·∧ pn(t̄n)→ false
)

=C∧m(p1)[t̄1]∧ ·· ·∧m(pn)[t̄n]→ false

6 Non-Monotonic Program Analysis

Let H C be a set of Horn clauses over relation symbols R. A H C is called solvable if there is a

relation symbol mapping m such that the instantiation m(h) of every clause h ∈ H C is valid.

Following recent work [4], it is clear that the assertion checking problem can be reduced to solvability

of Horn clauses.

4 Solving Horn Clauses with Abduction

In this section, we present our approach for assertion checking based on solving Horn clauses.

We assume we are given a set of Horn clauses H C , where each clause h ∈ H C is satisfiable, but

not necessarily valid. We want to find a relation symbol mapping m that solves the Horn clauses. We

find such an m by starting with an initial (guess) mapping m0 and updating it in every step until we find

the desired m. We use abduction to perform the update.

Let m be the current guess. If m(h) is valid for every h∈H C , we are done. Therefore, let h be a Horn

clause such that m(h) is not valid. Given the Horn clause h and the guess m, the abduction procedure

returns a set of formulas abd0,abd1 . . . such that for each abd j in this set, m(abd j ∧h) is valid. Let h be

of the form C∧B1 ∧ ·· · ∧Bn → H . We can now use the formula abd (from the set {abd0,abd1, . . .}) to

update the predicates in h to get the next guess m′. To that end, we have two options: we can weaken the

predicate in the head of the clause, or we can strengthen the predicates in the body of the clause.

Weakening. Weakening is the simpler option. Since, by definition, there is only one predicate H in the

head of the Horn clause, we can update the current mapping of H to:

m′(H) 7→ (abd =⇒ m(H)).

Strengthening. The second option is to strengthen the predicates in B1 ∧ ·· · ∧Bn to attempt to ensure

that

|= m′(B1 ∧ ·· ·∧Bn)→ abd.

There are many possible ways of partitioning the abduction across the B’s. In our implementation, we

strengthen each Bi by conjoining it with the projection of abd onto the variables of Bi, where projection

is defined as existentially quantifying out any variables that appear in abd but not in Bi. That is, for each

Bi, we update our mapping as follows:

m′(Bi) 7→ (proj(abd,vars(Bi))∧m(Bi)).

Both, weakening and strengthening can be used to modify the assignments of the predicates in H C

such that a previously non-valid clause become valid. However, such an update might turn a previously

valid clause into a non-valid one. That is, making all clauses in H C valid can be seen as a search

problem where we try to find (possibly short) sequence of weakening- and/or strengthening-steps that

make all clauses valid.

In the following, we discuss several search strategies to solve this problem, discuss their benefits and

problems and compare them experimentally. In the following we do not make any assumption about the

abduction procedure other than that it always finds at least one abduction if one exists.

D. Schwartz-Narbonne, P.Rümmer, M. Schäf, A. Tiwari, T.Wies 7

4.1 Breadth-first Strategy

The Breadth-first strategy takes a very simple solution to this problem: try every candidate solution in

order.

We can consider the candidate assignments (m′ above) generated by the abduction procedure as form-

ing a tree, where a node represents a candidate assignment. Leaf nodes are either true solutions to the

horn clause problem, or assignments for which the abduction procedure fails to generate new assign-

ments. For each assignment, the abduction procedure generates a finite number of candidate weakenings

and strengthenings, so each node has a finite number of children, and hence at every level, the tree has

finite width. The depth of the tree, however, may be unbounded (for example, the procedure might guess

the relation x > 4, then x > 5, then x > 6 etc).

The breadth-first strategy uses a FIFO queue to visit the tree in breadth first order. A candidate

assignment is removed from the queue and checked for correctness. If it is correct, we return success; if

not, we use abduction to generate its children, and place them on the queue. The key advantage behind

the breadth first strategy is that it guarantees a form of completeness: if a solution can be deduced using

the abduction procedure, it will be reached in a finite (albeit potentially exponentially large) number

of steps. Note that this is not a complete verification procedure. The abduction procedure may fail to

produce a necessary assignment, in which case we are incomplete.

We implemented two optimizations to the standard BFS algorithm. Since checking the correctness

of an candidate assignment is relatively cheap, we check candidate assignments as soon as they are

generated, and return success if we find one that satisfies the problem.

The second optimization came from the observation that candidate assignments tended to reappear

in the search. The result of strengthening and then weakening an assignment is sometimes (although not

always) the original assignment again. We maintain a set of previously processed candidate assignments,

and only process new assignments that are not members of this set.

4.2 Depth-first Strategy

Like for the breadth-first strategy, we think of the candidate assignments generated by the abduction

procedure as forming a tree, where a node represents a candidate assignment. The depth-first strategy

explores the tree until it reaches a leaf node. We then check if this node is indeed a solution to the horn

clause problem, and if not, we backtrack.

Since the depth of the tree of possible abductions is unbounded, this strategy does not carry the

same completeness guarantee as the breadth-first strategy. However, it may avoid visiting candidate

assignments that do not lead to the solution.

We prune the size of the search tree by maintaining an upper bound for each search path (upper

dotted line in Figure 1). This allows us to eliminate certain weakening steps: if a weakening step would

exceed the upper bound, we return the upper bound instead, and recurse on another path.

Such an upper bound, initially being true for each predicate assignment, can be updated every time

we do not find an abduction to further weaken an assignment. In that case, we update the upper bound to

this assignment intersected with the previous upper bound. By always intersecting the new upper bound

with the previous one, we ensure monotonicity and therefore progress (see Figure 1).

4.3 A∗ Strategy

The A∗ strategy is inspired by the A∗ graph searching algorithm [20]. A∗ modifies BFS by replacing the

FIFO queue with a priority queue, where the priorities are determined heuristically. This ensures that

8 Non-Monotonic Program Analysis

nodes that, according to the heuristic, are likely to lead to the answer are visited first. If the heuristic is

well chosen, this can dramatically improve the speed with which the solution is found.1

4.3.1 Selecting the Priority Heuristic

We considered two factors in developing our heuristic. First of all, we should prefer candidate solutions

which already solve more clauses: all else being equal, we are much more likely to reach the solu-

tion from a candidate in which only one clause is unsatisfied than one in which half of the clauses are

unsatisfied.

Secondly, our experience shows that successful candidates assignments tend to be syntactically sim-

ple. Candidates with extremely complicated formulas tend to represent cases where the abduction proce-

dure starts to iterate constants, such as x 6= 1∧ x 6= 2∧ . . ., which often does not converge in a reasonable

time.

We measured the complexity of a formula as the number of operators used (conjuncts, disjuncts,

additions, subtraction, etc) to represent the formula. (a > b) would have syntactic complexity of 1,

whereas

((a > b)∧ (x+ y < 12))

would have syntactic complexity of 4.

We tested a number of combinations of these two heuristics, and discovered that a simple multiplica-

tive factor

(#unsolved clauses)∗ (syntatic complexity)

seemed to be the most effective.

We maintained the existing optimizations from the BFS algorithm (early checking, and a set of

previously processed solutions to prevent repeating).

5 Experimental Evaluation

We perform a feasibility study of our approach and compare the different search strategies on a set of

common benchmark problems. As a baseline, we use two established tools for solving horn clauses,

Z3 [5] and Eldarica [32]. For the experimental evaluation, we implemented the breadth-first strategy

from Section 4.1 as BFS, the depth-first strategy from Section 4.2 as DFS, and the A∗ strategy from

Section 4.3 as AST .2

Experimental Setup. For solving horn clauses, we use the Princess theorem prover [31] and an imple-

mentation of the abduction procedure described in [11]. The search strategies from the previous section

are implemented as small Scala programs on top the abduction procedure and the theorem prover.

We run each search strategy as well as Z3 and Eldarica for 5 minutes on each Benchmark problem. If

no solution is found, we mark the attempt as a timeout. Since all approaches are sound, we only compare

whether they are able to find a solution and stop the time it takes to get there. As discussed later in the

threats to validity, we rerun our experiments with a larger timeout to ensure that this timeout is not biased

towards any of the tools.

1In the ideal case, if the heuristic is within a bound of the correct cost, (technically, an “admisible heuristic”), A∗ search is

provably optimal.
2Tool and benchmarks are available at www.csl.sri.com/~schaef/fm2015.tar

www.csl.sri.com/~schaef/fm2015.tar

D. Schwartz-Narbonne, P.Rümmer, M. Schäf, A. Tiwari, T.Wies 9

The benchmark set consists of 81 horn clause problems generated from looping or recursive C code

followed by an assertion that needs to be proved. The first 47 benchmarks prefixed with “loop” are

provided by the authors of [13]. Unfortunately, the tool implemented in this paper was not available for

comparison. The next 18 benchmarks prefixed with “RECUR” are taken from the SVCOMP benchmark

set.3 The remaining benchmarks are manual encodings of popular algorithms such as towers of Hanoi,

computation of Fibonacci numbers, or if a number is even or odd. Some of these are similar to examples

in the loop- or SVCOMP benchmarks, but use a different horn clause encoding.

Research Question. The goal of our experiment is to check if our non-monotonic approach can solve

benchmark problems that cannot be solved by Z3 and Eldarica. In general, however, we have to curb our

enthusiasm: if either Z3 or Eldarica find a solution then there exists a solution that can be reached with

a monotonic analysis within the time limit. Hence our approach can, at best, also find this solution but

is unlikely to be faster as our search space is bigger. Hence, the question that we are interested in is if

non-monotonic analysis can solve horn clause problems that cannot be solved by monotonic approaches.

Results. Table 1 gives a refined view of the experimental results. for space reasons, we refer to the

appendix for a per-benchmark evaluation of the results. From our strategies, the AST approach performs

best. It solves 37 of 81 benchmark problems. Any benchmark solved by DFS could also be solved

by AST , but AST is able to solve 11 benchmarks that DFS could not solve. Further, AST solves 17

benchmarks that cannot be solved by BFS. However, BFS is able to solve one benchmark where AST

times out. This is an example that our A∗ heuristic of preferring simpler abductions is not a perfect choice

and that there is room for improvement.

Z3 solves 54 benchmark problems, and Eldarica solves 55. Our approach solves two benchmarks

that can neither be solved by Z3 nor by Eldarica. Further, 5 of the benchmarks solved by us cannot be

solved by Z3 and 8 benchmarks cannot be solved by Eldarica. Z3 solves 13 benchmarks that cannot be

solved by Eldarica. Eldarica in turn can solve 14 benchmarks that cannot be handled by Z3. Out of the

81 benchmarks, 11 cannot be solved by any approach.

Z3 Eldarica BFS DFS AST

solved 54 55 21 26 37

solved exclusively 6 12 2

Not by Z3 - 14 2 5 5

Not by Eldarica 13 - 8 7 8

Not by BFS 35 42 - 10 17

Not by DFS 33 36 5 - 11

Not by AST 22 26 1 0 -

Table 1: The number of benchmarks solved per tool. This first row shows the total number of benchmarks

solved, the second shows the number of benchmarks that only this tool could solve, and the other rows

show how many benchmarks one approach could solve that another couldn’t solve.

Discussion. Our experiments show that our approach can solve an interesting subset of benchmarks

that cannot be solved by Z3 or Eldarica. The experiments further show that using a heuristic yields

3https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/

10 Non-Monotonic Program Analysis

substantial improvements in the number of solved benchmarks. The AST approach solves significantly

more benchmarks than BFS and DFS while there is only one benchmark where AST is worse than BFS.

Hence, we are optimistic that future improvements to the heuristic will allow us to solve more of the

benchmarks.

From in-depth analysis of cases where our approach fails, we identified the abduction procedure

as the main bottleneck. In many cases where our approach fails to find a solution it fails because the

abduction procedure does not generate the right predicates. With an ideal abduction procedure, these

benchmarks would easily be solvable. We believe that further improvements on the abduction procedure

will allow us to solve a larger number of these benchmarks; in particular, we plan to develop abduction

procedures that are able to take multiple clauses into account, to obtain a more holistic picture of the

problem to be solved. Further improvements can be expected by integrating orthogonal existing tech-

niques, including acceleration and widening methods. It is also planned to investigate whether abduction

can be combined with the exploration technique from [33].

On the benchmarks that can be solved by us and Z3 or Eldarica, our implementation is usually slower

than the other tools. However, there are several simple techniques that will yield substantial speed-ups.

For example, our current implementation checks if it already encountered a solution by checking if it is

implied by known solutions. This produces a large overhead that could easily be avoided by using an

indexing-based approach instead.

In our experiments, we did not evaluate how our non-monotonic analysis performs compared to a

monotonic analysis that uses the same abduction-based technique. To give an intuition, we can compare

the AST approach with the DFS approach. The DFS approach can be seen as an improved monotonic

analysis that first performs a sequence of strengthenings followed by a sequence of weakenings if it needs

to backtrack. From Table 1, we can see that AST solves significantly more benchmarks than DFS. A

purely monotonic analysis would still perform worse than DFS. However, we decided to not implement

and compare monotonic approaches based on our abduction technique because the results could be too

biased towards the non-monotonic analysis. In general, however, it is to expected that a non-monotonic

analysis always has an edge over a monotonic analysis.

Threats to Validity. This is a very early experimental evaluation and therefore subject to several threats

to validity. External threats to validity, that is the ability to generalize from our findings, are rooted in

the selection of our benchmarks. Our abduction procedure depends to a large extend on the encoding of

the horn clause problem. Hence, the heuristic in our A∗ algorithm may need to be adjusted if a different

encoding is used. We tried to address this issue by using benchmark sets from different sources but,

ultimately, one can always find an example where our heuristic is particularly good or bad.

Internal threats to validity, that is in what way our experimental setup could be biased in favor of

our approach, arise from the chosen timeout. To ensure that the selected timeout of 5 minutes is not

biased towards our approach, we reran the experiments with timeouts of 10 and 15 minutes. Changing

the timeout did not alter the number of benchmarks that can be solved by any of the tools.

6 Conclusion

We have presented a non-monotonic program analysis technique based on logical abduction. The ap-

proach bounds the non-monotonic search by a monotone sequence of checkpoints to enforce overall

convergence. The benefit of using a non-monotonic analysis is that we can experiment with different

search strategies to find a solution faster than with previous approaches that alternate monotonic pro-

D. Schwartz-Narbonne, P.Rümmer, M. Schäf, A. Tiwari, T.Wies 11

gram analysis but do not interleave them. A central contribution of this paper is the A∗-like search

presented in Section 4.3. Using a heuristic to determine how to alternate weakening and strengthening

closely resembles the way a human would solve a set of horn clauses and opens an interesting space for

future research.

Our experiments show that a heuristic search significantly outperforms breadth-first, and depth-first

strategies. From these results, we can extrapolate that the heuristic search would also outperform a

monotonic analysis that uses logical abduction. Although our current implementation cannot yet compete

with established tools such as Z3 and Eldarica due to the preliminary implementation of the abduction

engine, we demonstrated that non-monotonic search can solve problems that cannot be solved by these

tools. We are confident that future improvements of the abduction engine and the search heuristic will

result in a competitive and highly customizable tool.

References

[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-based algorithm for inter-

procedural verification. In VMCAI, pages 39–55, 2012.

[2] T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. A constraint-based approach to solving games

on infinite graphs. In POPL, pages 221–234. ACM, 2014.

[3] T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quantified Horn clauses. In CAV, pages

869–882, 2013.

[4] N. Bjørner, K. McMillan, and A. Rybalchenko. Program verification as satisfiability modulo theories. In

SMT Workshop at IJCAR, 2012.

[5] N. Bjørner, K. L. McMillan, and A. Rybalchenko. On solving universally quantified horn clauses. In SAS,

pages 105–125, 2013.

[6] A. R. Bradley. Understanding IC3. In Proc. SAT, volume 7317 of LNCS, pages 1–14, 2012.

[7] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis by means of bi-abduction.

SIGPLAN Not., 44(1):289–300, Jan. 2009.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proc. 4th POPL, 1977.

[9] P. Cousot and R. Cousot. Refining model checking by abstract interpretation. Automated Software Engineer-

ing, 6(1):69–95, 1999.

[10] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic inference of necessary preconditions. In

VMCAI, pages 128–148, 2013.

[11] I. Dillig and T. Dillig. Explain: A tool for performing abductive inference. In Proceedings of the 25th In-

ternational Conference on Computer Aided Verification, CAV’13, pages 684–689, Berlin, Heidelberg, 2013.

Springer-Verlag.

[12] I. Dillig, T. Dillig, and A. Aiken. Automated error diagnosis using abductive inference. In Proceedings of the

33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, pages

181–192, New York, NY, USA, 2012. ACM.

[13] I. Dillig, T. Dillig, B. Li, and K. McMillan. Inductive invariant generation via abductive inference. SIGPLAN

Not., 48(10):443–456, Oct. 2013.

[14] E. Ermis, J. Hoenicke, and A. Podelski. Splitting via interpolants. In VMCAI’12, pages 186–201. Springer,

2012.

[15] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing software verifiers from proof

rules. In PLDI, pages 405–416, 2012.

[16] S. Gulwani and N. Jojic. Program verification as probabilistic inference. In POPL, 2007.

12 Non-Monotonic Program Analysis

[17] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified logical domains. In Pro-

ceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’08, pages 235–246, New York, NY, USA, 2008. ACM.

[18] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement for verifying multi-threaded

programs. In POPL, 2011.

[19] A. Gupta, C. Popeea, and A. Rybalchenko. Solving recursion-free Horn clauses over LI+UIF. In APLAS,

pages 188–203, 2011.

[20] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths.

Systems Science and Cybernetics, IEEE Transactions on, 4(2):100–107, July 1968.

[21] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, 2010.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In POPL, pages

232–244. ACM, 2004.

[23] K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT, 2012.

[24] K. R. M. Leino and F. Logozzo. Loop invariants on demand. In APLAS, volume 3780 of LNCS, pages

119–134, 2005.

[25] K. L. McMillan. Lazy abstraction with interpolants. In CAV’06, pages 123–136, 2006.

[26] K. L. McMillan and A. Rybalchenko. Solving constrained Horn clauses using interpolation. Technical Report

MSR-TR-2013-6, Microsoft Research, 2013.

[27] M. Méndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A flexible, (c)lp-based approach to the analysis of

object-oriented programs. In LOPSTR, pages 154–168, 2007.

[28] Y. Moy. Sufficient preconditions for modular assertion checking. In VMCAI, pages 188–202, 2008.

[29] C. S. Pierce. The Collected Papers of Charles Sanders Peirce. Harvard University Press, 1935. Editors C.

Hartshorne and P. Weiss.

[30] A. Podelski, A. Rybalchenko, and T. Wies. Heap assumptions on demand. In CAV, pages 314–327, 2008.

[31] P. Rümmer. A constraint sequent calculus for first-order logic with linear integer arithmetic. In Proceedings,

15th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume

5330, pages 274–289, 2008.

[32] P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for horn-clause verification. In CAV, pages

347–363, 2013.

[33] P. Rümmer and P. Subotic. Exploring interpolants. In FMCAD, pages 69–76, 2013.

[34] O. Sery, G. Fedyukovich, and N. Sharygina. Interpolation-based function summaries in bounded model

checking. In Haifa Verification Conference (HVC), Haifa, 2011. Springer.

D. Schwartz-Narbonne, P.Rümmer, M. Schäf, A. Tiwari, T.Wies 13

Appendix

The results of our experiments are shown in Table 2. For each approach we record if it is able to solve a

benchmark problem within 5 minutes. If so, we mark it with a ✓ and if it does not return a result within

the time limit, we mark it with a ✗. Note that, for space reasons, we do not give the computation time

for each approach and benchmark. Our approach is in most cases slower than Z3 and Eldarica for the

examples that can be solved by both. This can be largely attributed to the prototypical implementation

and the sub-optimal abduction procedure. We discuss our planned performance improvements below.

14 Non-Monotonic Program Analysis

Benchmark Z3 Eldarica BFS DFS A∗

loop-01 ✓ ✓ ✓ ✓ ✓

loop-02 ✓ ✓ ✗ ✗ ✓

loop-03 ✓ ✓ ✓ ✓ ✓

loop-04 ✓ ✓ ✗ ✓ ✓

loop-04’ ✓ ✓ ✗ ✓ ✓

loop-05 ✓ ✗ ✓ ✓ ✓

loop-06 ✓ ✓ ✗ ✗ ✓

loop-07 ✗ ✗ ✗ ✗ ✗

loop-08 ✓ ✗ ✗ ✗ ✓

loop-09 ✓ ✗ ✗ ✗ ✗

loop-10 ✓ ✓ ✗ ✗ ✗

loop-11 ✓ ✓ ✗ ✓ ✓

loop-12 ✓ ✗ ✓ ✗ ✗

loop-13 ✓ ✓ ✗ ✗ ✗

loop-14 ✗ ✓ ✗ ✗ ✗

loop-15 ✗ ✓ ✗ ✗ ✗

loop-16 ✗ ✓ ✗ ✓ ✓

loop-17 ✓ ✓ ✗ ✓ ✓

loop-18 ✗ ✗ ✗ ✗ ✗

loop-19 ✓ ✓ ✓ ✗ ✓

loop-20 ✓ ✓ ✗ ✗ ✗

loop-21 ✗ ✗ ✗ ✗ ✗

loop-22 ✓ ✓ ✗ ✗ ✗

loop-23 ✓ ✗ ✓ ✓ ✓

loop-24 ✓ ✓ ✓ ✓ ✓

loop-25 ✓ ✓ ✓ ✗ ✓

loop-26 ✓ ✓ ✗ ✗ ✗

loop-27 ✓ ✓ ✓ ✓ ✓

loop-28 ✓ ✗ ✓ ✓ ✓

loop-29 ✓ ✓ ✓ ✗ ✓

loop-30 ✗ ✗ ✓ ✓ ✓

loop-31 ✓ ✓ ✓ ✗ ✓

loop-32 ✗ ✗ ✗ ✗ ✗

loop-33 ✓ ✓ ✗ ✗ ✓

loop-34 ✓ ✗ ✗ ✗ ✗

loop-35 ✓ ✓ ✗ ✗ ✗

loop-36 ✓ ✓ ✗ ✗ ✗

loop-37 ✓ ✓ ✗ ✗ ✗

loop-38 ✗ ✗ ✗ ✗ ✗

loop-39 ✓ ✓ ✗ ✗ ✗

loop-40 ✓ ✓ ✗ ✗ ✓

Benchmark Z3 Eldarica BFS DFS A∗

loop-41 ✓ ✗ ✓ ✓ ✓

loop-42 ✓ ✗ ✗ ✗ ✗

loop-43 ✓ ✓ ✓ ✓ ✓

loop-44 ✗ ✓ ✗ ✗ ✗

loop-45 ✓ ✗ ✗ ✗ ✗

loop-46 ✓ ✓ ✓ ✓ ✓

RECUR-addition ✗ ✓ ✗ ✗ ✗

RECUR-bfprt ✓ ✗ ✗ ✗ ✗

RECUR-binarysearch ✓ ✓ ✓ ✓ ✓

RECUR-buildheap ✗ ✗ ✗ ✗ ✗

RECUR-countZero ✗ ✓ ✗ ✗ ✗

RECUR-floodfill ✓ ✗ ✗ ✗ ✗

RECUR-half ✗ ✗ ✗ ✗ ✗

RECUR-identity ✓ ✓ ✗ ✗ ✗

RECUR-mccarthy91 ✓ ✓ ✗ ✗ ✓

RECUR-mccarthy92 ✓ ✓ ✗ ✗ ✗

RECUR-merge ✗ ✓ ✗ ✗ ✗

RECUR-merge-leq ✗ ✓ ✗ ✗ ✗

RECUR-palindrome ✗ ✓ ✗ ✗ ✗

RECUR-parity ✓ ✓ ✗ ✓ ✓

RECUR-remainder ✗ ✓ ✗ ✓ ✓

RECUR-running ✗ ✓ ✗ ✗ ✗

RECUR-running-old ✓ ✓ ✓ ✓ ✓

RECUR-triple ✗ ✓ ✗ ✗ ✗

test/01 ✗ ✗ ✓ ✓ ✓

test/04 ✓ ✓ ✗ ✓ ✓

test/04x ✓ ✓ ✗ ✓ ✓

test/05 ✗ ✓ ✗ ✓ ✓

test/11 ✓ ✓ ✗ ✗ ✗

test/ackerman ✓ ✓ ✓ ✓ ✓

test/addition1 ✗ ✓ ✗ ✗ ✗

test/cousot.correct ✗ ✗ ✗ ✗ ✗

test/dillig ✗ ✗ ✗ ✗ ✗

test/dillig2 ✓ ✓ ✗ ✗ ✗

test/dillig-oopsla ✗ ✗ ✗ ✗ ✗

test/EvenOdd01 ✓ ✗ ✓ ✓ ✓

test/fibonacci01 ✓ ✓ ✗ ✗ ✗

test/fibonacci02 ✓ ✓ ✗ ✗ ✗

test/hanoi ✗ ✗ ✗ ✗ ✗

test/mccarthy91 ✓ ✓ ✗ ✗ ✓

Table 2: Results per benchmark. ✓means that a

tool could solve the benchmark within 5 minute

and ✗means it reached the timeout.

	Introduction
	Brief Overview of our Approach

	Related Work
	Preliminaries
	Horn Clauses

	Solving Horn Clauses with Abduction
	Breadth-first Strategy
	Depth-first Strategy
	A* Strategy
	Selecting the Priority Heuristic

	Experimental Evaluation
	Conclusion

